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Abstract

This technical report examines the process by which sensor data from a
region suspected to contain landmines is used to determine a set of alarm
sites, including the manner in which the alarm set provided is scored against
competing algorithms. The work and recommendations based on it were
developed during the Mathematical Problems in Industry Workshop, held at
Duke University June 13-17, 2016.



Chapter 1

Introduction

The United Nations (UN) estimates that fifteen to 20 thousand people die
by landmine each year, most of them children, women and the elderly. Many
of these deaths occur in areas where conflict ended long ago. Despite the
1997 passage of a UN Convention banning their production, use and export,
landmines are still used today, guaranteeing that these unfortunate deaths
will continue to occur for years to come.

The effort to address this global problem through landmine detection has
been helped considerably by advances in tools for imaging and data process-
ing. The availability of electromagnetic and acoustic sensor data across a
broad region of the spectrum and the ubiquity of fast computers with ample
storage are providing increasingly accurate predictions of where landmines
lie within a region of interest (see Fig. 1.1 for an example scenario).

This report discusses algorithmic ways to improve the processing of sensor
data to produce an alarm set of predicted target sites that can be provided
to personnel in the field. The process by which remote sensing data, such
as the radar scan in Fig. 1.2 of a defined region suspected to contain land
mines, is used to obtain an alarm set such as that depicted in Fig. 1.3 involves
multiple stages. Briefly summarized, these include:

1. processing of the raw data to remove artifacts, smooth over physically
irrelevant spatial scales, etc.;

2. conversion of the processed data into a confidence map;

3. conversion of the confidence map into a discrete set of points and con-
fidence values (the alarm set); and
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Figure 1.1: Example scenario of radar data obtained from a region of interest
in the field.

Figure 1.2: Stacked (false-color) image of radar data from detection experi-
ment similar to that depicted in Fig. 1.1. Landmines identified by faint blue
ellipses.

4. establishment of a threshold that flags a subset of the alarm sites as
predicted target sites.

Each of these stages offers an interesting set of mathematical questions re-
lated to optimizing detection rates. This optimization is often framed by the
client (e.g., the Department of Defense) in terms of obtaining the minimum
possible false detection rate for a given positive detection rate, but more com-
plex scoring mechanisms such as the receiver operating characteristic (ROC),
depicted in Fig. 1.4 and explained in Appendix A, exist to quantify the skill
of a particular algorithm.

In addition to comparing different alarm set generation algorithms against
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Figure 1.3: Cartoon of alarm set generated by algorithm applied to sensor
data.

Figure 1.4: Idealized ROC curve plotting true positive detections Pd against
false positives Pf .
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Figure 1.5: Schematic of process from provision of sensor data to scoring of
alarm set generation algorithm.

each other, it is of interest to compare them with the best possible algorithm
that does not use any sensor data. This algorithm provides an alternative
alarm set that is generated based only on the geometry of the search region
and assumptions regarding the distribution of targets. In the remainder of
the report, references to a “diligent digger” denote algorithms that have no
access to data but have otherwise been optimized with respect to a priori
variables such as geometry and native landmine distributions to do as well
as possible relative to a given scoring metric. A “diligent digger” algorithm
contrasts with a “naive digger” algorithm, which has no access to sensor data
and does not take into account geometry and other factors.

Figure 1 broadly depicts the process by which sensor data is transformed
into an alarm set, that is then scored relative to uninformed algorithms to
assess the value added by the sensor data. The remaining chapters in this
report focus on the three arrows in this schematic, followed by conclusions
and recommendations to CoVar Applied Technologies for further study.
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Chapter 2

Building Confidence Maps from
Sensor Data

The confidence level C(x, y) is intended to qualitatively reflect the likelihood
of discovering a landmine within a fixed distance from the point (x, y). In
principle C could be made into a probability density; however, this would
require detailed knowledge of uncertainty in the sensor data and the landmine
distribution. Figure 1.2 clearly shows artifacts and noise in the sensor data
that affect the background level so as to artificially increase the probability
of an alarm placed in certain regions.

This effect of background noise variation can be mitigated by defining the
noise background level through

n(x, y) =
1

m(D(x, y))

∫
D(x,y)

C0(x′, y′) dx′ dy′, (2.1)

where C0 is the original sensor data amplitude and m(D) is the area of a
rectangle (assumed here to be fixed in size) centered at point (x, y). The
confidence map is then defined as

C(x, y) = C0(x, y)/n(x, y). (2.2)

Applying this denoising technique produces Fig. 2.2 from 2.1, with a no-
ticeable improved in the ROC-FAR curve, as seen in Fig. 2.3. It is expected
that more sophisticated image processing and filtering techniques that in-
corporate more information from the problem at hand would provide even
better results.
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Figure 2.1: Original sensor data amplitude.

Figure 2.2: Confidence map obtained from sensor data after removing noise
background.

Figure 2.3: ROC-FAR curves for alarm sets generated from sensor data (blue)
and confidence map removing noise background from sensor data (orange).
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Chapter 3

Building Alarm Sets from
Confidence Maps

3.1 Topological algorithm

Figure 3.5 shows a typical alarm set generated by the algorithm currently in
use at CoVar. It is immediately apparent that there are several alerts that are
placed very close to each other, or in other words, that are clustered. We want
to reduce these clusters by retaining only the most prominent peak for each
cluster. We do so by looking at the peaks that topologically belong to the
same “mountain”, or region of clustered peaks. We developed an algorithm
based on topological data analysis: We gradually lower the threshold to which
determine the peaks on the confidence map C(x, y) (as showed in Fig. 3.1,
where for simplicity sake we have considered a one-dimensional version of the
confidence map C(x)); We find the regions that are topologically connected;
For each region sufficiently large, we keep the prominent peak and then lower
the remaining peaks to the threshold value.

On a two-dimensional confidence map C(x, y) the result of our topolog-
ical algorithm is illustrated in Fig. 3.2. A single peak has been retained
over a region of several peaks. This topological approach can equivalently
be regarded as a smoothing algorithm applied iteratively to produce a new
confidence map from sensor data, in order to clean up large clusters of alerts.
The results on the data are plotted in a close-up version of Fig. 1.2 alongside,
for comparison sake, in Fig. 3.3.

To evaluate the performance, we plot the ROC curves obtained using just
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Figure 3.1: Left: A 1-d version of the confidence map C(x)); as we lower the
threshold, we find larger regions of constant confidence that are topologically
connected. Right: Contour plots of constant confidence.

Figure 3.2: Left: Confidence map C(x, y) given by CoVar, where alert points
would be placed on every relative maximum. Right: The same confidence
map with only one alert point retained at the maximum peak for the same
cluster of alert points.
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Figure 3.3: Left: Sensor data before the application of our algorithm. Right:
Confidence map resulting from the clustering algorithm.
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Figure 3.4: The ROC curves based on the given algorithm by CoVar and by
the topological algorithm we developed.

the sensor data, and the one obtained with our topological algorithm. We
can see in Fig. 3.4 that our algorithm has a ROC curve (red curve) that
shows improved performance.

3.2 Alarm aggregation and hierarchical clus-

tering

An alternative approach to address the alarm set clustering apparent in
Fig. 3.5 uses aggregation based on hierarchical clustering with the goal of
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Figure 3.5: Alarm set predicted by CoVar algorithm.

reducing the spatial density of alarms and increasing the score of the algo-
rithm as based on the ROC curve.

First we compute the Euclidean distance between each pairs of alarm
locations, which is used to get a hierarchical cluster tree by the linkage

function in MATLAB. Then we use the cluster function to construct clus-
ters from the cluster tree: When the inconsistent value between a node and
all of its subnodes are below the criterion 0.2, we group the leaves at the
node and its corresponding subnodes into a cluster. Within each cluster the
alarm location with the highest confidence is then set to be the “center” of
the cluster and we only keep this alarm with highest confidence in the cluster.

To study the effectiveness of this clustering method, we plot the reduced
alarm sets with red squares in Figure 3.6 from the full alarm set generated by
CoVar algorithm in Figure (3.5). It is worth mentioning that there is a blue
circle beneath each red square in Figure 3.6, while the uncovered blue circles
correspond to the alarms that are reduced by the clustering algorithm. The
comparison in terms of ROC curve in Figure (3.7) shows that the reduced
alarm set generated by the clustering algorithm performs slightly better than
the original algorithm when FAR is small. Better performance of this algo-
rithm may be achievable if a more appropriate criterion for the inconsistent
value is chosen.
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Figure 3.6: A comparison of alarm set before (blue circles) and after (red
squares) hierarchical clustering. The alarm set after clustering has fewer
alarms.
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Figure 3.7: A comparison of the ROC curves for alarm sets generated by the
CoVar algorithm (black) and after applying the clustering algorithm (red).

3.3 Iterative centroid scheme for alarm set

generation

Covar currently determines the location of alarms by determining the location
of local maxima in the confidence map. In practice, a user would dig a
circle of radius r around the location of the alarm in search for an explosive
device. This may not be the appropriate action if the confidence map is
not symmetric about the alarm location. An alternate approach for placing
alarms utilizes the location of the centroid of the region over the disk of radius
r, initialized at the location of the local maximum. The density function used
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Figure 3.8: One-dimensional example of results of centroid iterative algo-
rithm for alarm generation. Numbers label result of iteration number.

in the centroid calculation is the provided confidence map. The centroid is
iteratively recomputed over the support of the circular disk until it converges.
The determined centroid location is a new alarm location.

This technique may also provide information about how to dig about an
alarm location in a more informed manner. Instead of digging in a circle
about a given local maximum, the customer may dig in a path determined
by the locations of the centroids determined in this iterative process.

3.4 Integrating confidence map over eligible

configurations

Alarm sets can also be generated using a combinatorics approach over a dis-
cretized domain, taking all compliant target configurations as equally likely.
Let n∆x be the number of eligible configurations given a discretization ∆x
of the domain, and let Ij(x) be an indicator function for the domain cover-
age associated with configuration j for j = 1, . . . , n∆x. The confidence score
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associated to each eligible configuration on domain [0, L] is then

Cj =

∫ L

0

C(x)Ij(x) dx. (3.1)

These confidence scores can be rank-ordered to determine the most likely
landmine locations and orientations from among the eligible configurations.

Figure 3.9 illustrates this detection approach using a noisy sensor dataset
generated by applying a Gaussian random noise field to an indicator function
with amplitude µ defined on uniform partition {xi} = {0,∆x, 2∆x, . . . , L},
i.e.,

s(xi) = µI(xi) + ξ(xi) (3.2)

where E[(ξ(xi))ξ(xj)] = χδij. Whereas an algorithm basing its alarm set on
the confidence peaks misidentifies the single target in the domain, a method
integrating the confidence C(x) over the support of the target configuration
correctly identifies its location.

Figure 3.10 further demonstrates that, for sensor datasets generated using
Eqn. 3.2 with varying values of signal strength µ, integrating the confidence
map over the support of the landmine configuration consistently outperforms
the peak detection method. Both methods naturally agree in the extremes
of vanishingly small signal strength (i.e., random detection) and very large
signal strength (perfect detection). This would not be the case with multiple
landmines, as illustrated in Sec. 3.4.1.

3.4.1 2-d problem

The combinatorics approach above can be adapted in a straightforward way
to a rectangular domain in two dimensions if the targets are also assumed
rectangular, yielding configurations similar to those depicted in Fig. 3.11

Figure 3.4.1 provides an example sensor dataset and the 3-alarm set gen-
erated by the integrated and peak detection methods. The improvement in
predictive skill is significantly increased in two dimensions relative to the
one-dimensional case, as illustrated by Fig. 3.4.1. In this case, the peak de-
tection method does not asymptote to perfect detection in the limit of large
signal strength due to the nonvanishing probability of two peaks occurring
over a single landmine.

The primary difficulty with this approach is the computational cost asso-
ciated with determining all eligible configurations. This difficulty is mitigated
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Figure 3.9: Area method integrates confidence map over eligible configura-
tions to successfully identify target. Covar algorithm based on peak detection
misidentifies target. Here µ = 1.5 and χ = 1.
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Figure 3.10: Comparison of integrated and peak detection methods with
varying signal strength µ and fixed unit noise variance. Performance is av-
eraged over 1000 simulations.

Figure 3.11: Depiction of three eligible landmine configurations on 2-d do-
main.
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Figure 3.12: Alarm sets generated by the integrated (red circles) and peak
(blue squares) detection methods. The peak detection method misidentifies
one of the targets.
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Figure 3.13: Probability of detection vs. signal strength µ, using three 1× 3
bombs in a 2× 10 domain.

by computing a configuration library in advance to apply simple screens for
the purpose of integrating confidence scores.
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Chapter 4

Diligent Diggers

Taken as a whole, an alarm set generated from sensor data should reason-
ably be expected to outperform one that does not incorporate the data. If
the process of generating an alarm set is considered sequentially as targets
are identified in reverse order of confidence, however, then at some point
the confidence peaks upon which alarm sites are based become practically
indistinguishable from noise. At this point, a data-uninformed but other-
wise optimized “diligent digger” algorithm should perform equally as well as
the data-informed algorithm, but with less associated computational cost.
The development of diligent digger algorithms that apply under different ge-
ometries, different known mine distributions, and different scoring methods
is therefore important both for providing a baseline against which the data-
informed algorithms can be measured, and also for providing a fast and cheap
alternative to the data-informed algorithm once the high-confidence targets
have been identified.

The performance of a diligent digger algorithm will depend on the scoring
procedure used and will obviously vary depending on the ground truth but
should be optimal in the sense of expectations against the target distribution.
Lower bounds for the performance of this “diligent digger” are provided by
the presumably equivalent (in an averaged sense) examples of locating the
alarm set sites at vertices of a regular mesh and drawing the sites from a
distribution that is uniform in the x- and y-coordinates. It is not clear a
priori how to choose the diligent digger’s confidence values or how to choose
the size (cardinality) of the diligent digger’s alarm set.

The sensor-based confidence map is very effective at detecting targets for
locations with high confidence values. However, the alarms generated with
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low confidence values from the confidence map do not perform well at detect-
ing the remaining targets. From the slope of the ROC-FAR curve at these
points, we expect that at some confidence threshold the sensor-based algo-
rithm does no better than alarms that are randomly placed. To test this, we
have constructed several uninformed algorithms that place alarms without
the use of sensor data. These uninformed algorithms are then improved by
using information about the length scale of the landmines and detection ra-
dius of the alarms to place alarms sufficiently far from one another maximize
the detection area.

4.1 Random digger

In distinction to the optimized diligent digger discussed above, an uninformed
‘naive digger’ algorithm assigns random confidence values to alarm locations
that are either chosen randomly or arranged in a grid format. As expected,
uninformed ‘naive digger’ algorithm alone perform substantially worse than
the data-informed algorithm. The ROC-FAR curves for the sensor-based
algorithm and the two naive digger algorithms are shown in Fig. 4.1. In this
figure two realizations are shown of the random alarm placement algorithm
and the grid placement algorithm in addition to the average curve from 1000
simulations for these two methods. The sensor-based algorithm identifies
targets well using alarms with high confidence values, which is associated
with the steep part of the ROC curve for small FAR values. The performance
of the sensor-based algorithm decreases as more targets are identified.

These uninformed methods were then augmented with the informed al-
gorithm to attempt to improve later target detection performance. Setting
a confidence threshold for which the confidence map would no longer be
trusted, the lower confidence alarms were then replaced with the naive digger
algorithms discussed above. Though there was better performance in placing
alarm locations in a uniform grid than the random alarm location when used
alone, the performance of these two augmented algorithms is virtually the
same. Results for these augmented methods are shown in Fig. 4.2.

The average performance of the augmented random method can be com-
pared to the expected slopes of these lines based on the remaining target
area Aremaining targets and total area Atot of the region of interest. The ex-
pected slope for a fixed FAR value can be calculated using the relationship
between number of true alarms t and false alarms f . Assuming random alarm
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Figure 4.1: ROC-FAR curves for the sensor based algorithm and uninformed
algorithms.

placement we expect that this ratio is equal to the ratio of Aremaining targets to
the area remaining after target removal. This leads to the following equation
for the expected value of the slope for the performance of the augmented
random method

E[slope] =
Aremaining targets · Atot

(Atot − Aremaining targets)N
, (4.1)

where N is the number of total targets. These expected slopes are shown
with the quivers in Fig. 4.3, while the average of the random simulations are
shown with the colored curves in Fig. 4.3. From the figure we see that the
slopes from the simulations are very similar to the expected slopes given by
the quivers. For example, at a 0 FAR value, the expected slope is 0.1968, and
the slope of the 1000 averaged simulations is 0.1828. It is also clear from this
figure that switching to a random algorithm at some confidence threshold
performs just as well as the sensor based algorithm.

4.2 Shape-optimized diligent digger

These methods can be improved by using information about the expected
landmine size. To construct our ‘diligent’ digger with this information, we
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build on the idea of a uniform grid but avoid placing alarms at locations
within a landmine radius distance to an alarm already placed using sensor
data. This guarantees that the remaining area is not double counted. This
systematically performs better than the removed low-confidence targets. The
ROC-FAR plot for these methods is plotted in Fig. 4.4.

Figure 4.2: ROC-FAR curves for the sensor based algorithm, and augmented
sensor based algorithms for alarms with high confidence and uninformed
algorithms for alarms with low confidence.

Examples of the alarm placements for the augmented algorithms are
shown in Fig. 4.6.

4.2.1 Distribution of configurations

The alarms placed in the bottom right axes of Fig. 4.6 simply exclude grid-
points based on a minimum distance criterion. A more accurate but also
more computationally intensive alternative is to compute all eligible configu-
rations of landmines with a given size and configuration, as discussed above
in Sec. 3.4. In the following sections we elaborate on this approach using
a one-dimensional example, commenting that adding dimensions is straight-
forward.

Consider the placement of n targets of fixed length L in an interval of
length 1. To devise an optimal strategy for the diligent digger, we need to

21



Figure 4.3: ROC-FAR curves taking the average of 1000 simulations using
the sensor based and random augmented algorithm. The colored curves cor-
respond to switching to difference confidence thresholds of placing alarms
using a random scheme instead of using the sensor data. The quivers cor-
respond to the expected slopes of the curves based on the remaining target
area and lane area.

understand what constitutes a uniform distribution over the set of allowable
target configurations. If we choose xi, i = 1, . . . , n to represent the left
end points of the indistinguishable targets, we may assume without loss of
generality that x1 ≥ 0, xi+1 − xi ≥ L for i = 1, . . . , n − 1, and xn ≤ 1 − L.
A uniform distribution in x ∈ Rn that satisfies these hyperplane constraints
can be expressed by defining y0 = x1, yi = xi+1−xi−L, and yn = 1−L−xn.
Then y is assumed uniformly distributed with all components positive and
confined to hyperplane

n∑
i=0

yi = 1− nL. (4.2)

A concise algorithm for generating y draws n values ξi from U [0, 1 − nL],
indexed in increasing order, and sets y0 = ξ1, yi = ξi+1−ξi for i = 1, . . . , n−1,
and yn = 1− ξn. Thus, x1 = ξ1 and xi = ξi + iL for i = 2, . . . , n.

This distribution in combination with a scoring method provides a sys-
tematic basis to optimize alarm placement, with objective function E[S]
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Figure 4.4: ROC-FAR curves for the sensor based algorithm and augmented
algorithms for alarms with low confidence (“smart grid” refers to grid place-
ment with minimum distance criterion).

Figure 4.5: ROC-FAR curves for the sensor based algorithm and the aver-
age of 10 trials using the augmented grid algorithm with minimum distance
criterion.
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Figure 4.6: Example alarm placements using the sensor based algorithm (top
left), augmented sensor based algorithm for highly confident locations and
random placement for low confidence alarms (top right), augmented algo-
rithm using grid placement for low confidence alarms (bottom left), aug-
mented algorithm using grid placement with minimum distance (bottom
right).
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where S is the scoring metric (e.g., AUC or another metric derived from the
ROC) and the expectation is taken over the above distribution. If we simply
use probability of detection as a proxy for S, we can compute the spatial den-
sity associated with the random distribution described above. Figure 4.2.1
illustrates four sample densities for different choices of n targets of fixed
length L. In each case, as L → 1 the density acquires structure that in-
forms the diligent digger where to place the alarms. As L → 0, the density
approaches uniformity, suggesting that all alarm placements with separation
of at least L between each other and from the boundaries have equal utility
relative to the objective of expected probability of detection.

25



Figure 4.7: Four sample densities provided by eligible configurations in 1-d
domain. Examples are 1 bomb with length 0.6L (top left), 3 bombs with
length 0.02L (top right), 3 bombs with length 0.2L, and 3 bombs with length
0.32L.
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Chapter 5

Alternative Scoring Methods

Any algorithm used to generate alarm sets from sensor data must be tested
against alternative algorithms that may preferable due to their computational
cost or ease of deployment, starting with the diligent digger algorithms dis-
cussed in Chapter 4. This comparison is based on a scoring metric which
may be supplied by the customer, e.g., minimum false detection rate for
fixed positive detection rate, or may be a standard metric discussed in the
statistical literature, such as the AUC described in App. A. A third alter-
native proposed here treats the generated alarm set and the target locations
as two sets of data generated from distributions that may or may not be
statistically independent.

In this section, we develop another alternative to algorithm evaluation
based on a hypothesis testing framework. The alarm-detection algorithm
can be thought of as a bivariate random variable Xa whose realizations are
alarm location predictions (i, j)a. Similarly, the true locations of the alarms
can be thought of as realizations (i, j)t of a bivariate random variable X t.
Denote the probability distributions of Xa and X t as Da and Dt, respectively.
Each time the algorithm is run, we obtain a sample xa = (xa1, x

a
2, ..., x

a
na

) from
Da, and each set of true alarm locations xt = (xt1, x

t
2, ..., x

t
nt

) is a sample from
Dt. Note that the elements of these samples are pairs of indices (i, j) that
correspond to either bomb location predictions (xa) or true bomb locations
(xt). To test the performance of the algorithm, we can determine if xa comes
from the same distribution as xt via a hypothesis test that we define as
follows:

H0 : Da = Dt

27



H1 : Da 6= Dt

Here H0 denotes the null hypothesis and H1 the alternative. The design
of the crossmatch statistical test means that, for bomb detection algorithm
evaluation, we hope that the null hypothesis will not be rejected because this
will mean that the algorithm performed well.

5.1 Hypothesis testing with the crossmatch

statistics

To construct the crossmatch test statistic A1, first group the samples into
one vector x = (xa, xt)T . Next, find the optimal non-bipartite pairing of the
elements of x. In words, the optimal non-partite pairing of x is a paring of
the elements of x such that the the sum of the distances between the elements
of the pairs is minimized. This optimal pairing is a tractable optimization
problem that can be performed in O(n3) operations, where n = na + nt =
dim(x). For more details on the pairing, see [3].

Let xo be the optimal non-bipartite pairing of x and define A1 to be the
number of pairs in xo that have one member of the pair belonging to xa and
the other member belonging to xt. Intuitively, a small value of A1 indicates
that the sum of the pairwise distances was minimized by forming pairs where
both elements either belonged to xa or xt so that, in a sense, the samples xa

and xt form distinct clusters. On the other hand, a large value of A1 indicates
that there was no advantage (with respect to the minimization problem) to
be gained by keeping points belonging to xa and xt separate, and thus we can
conclude that there is a lot of overlap between xa and xt. Hence, we reject
the null hypothesis if A1 is small. Formally, the distribution of A1 under the
null-hypothesis is

P(A1 = a1) =
2a1 (n/2)!(

n
na

)
a0! a1! a2!

,

where a0 = nt−a1
2

and a2 = na−a1
2

. a0 is the number of pairs that have
no members belonging to xa. a2 is the number of pairs that have both
members belonging to xa. This distribution is exact, i.e. we need not make
any assumptions about the distribution of A1. [3] describes what to do when
n is odd and also performs the full derivation of P(A1 = a1). We reject the
null hypothesis if P(A1 ≤ a1) < α, where α is the desired significance level.
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We did not calculate the p-value by hand, but rather with the crossmatch
package in R. The results for different numbers of alarms are displayed in
Table 5.1.

Table 5.1: Crossmatch p-values for different numbers of alarms placed
# of Alarms Placed p-value
200 0.1218
1000 0.8714
2100 0.2807
4000 0.7114
5000 0.6915
7000 0.6627

In Table 5.1, high p-values indicate good predictions by the algorithm.
We see that the optimal number of alarms to place could be in the vicinity of
1000. Future work could strive to rigorously determine the optimal number
of alarms.

5.2 Testing for independence with distance

correlation

In situations when the cross-match test rejects the null-hypothesis, we con-
clude that the algorithm output (which comes from probability distribution
Da) is not an accurate representation of the true locations of the alarms
(which come from probability distribution Dt). Even if this happens, all
may not be lost: if it turns out that there is any statistical dependence
between the Da and Dt, then this would imply there exists a mapping
F : V al(Xa) −→ V al(X t), where V al(Y ) is the space of values that can
be taken by a random variable Y . If we could then find a good approxima-
tion F̂ to F , then we could use F̂ to transform the algorithm output into
something that better reflects the true alarm locations. To test for depen-
dence between Da and Dt, we can use the distance correlation hypothesis
test:

H0 : Da |= Dt

H1 : Da 6⊥⊥ Dt
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where |= denotes statistical independence.
The distance correlation test measures both linear and non-linear statis-

tical dependence. Acceptance of the null-hypothesis implies that the alarms
and true locations are statistically independent, which would mean the map-
ping F does not exist. In this case, it would be probably be best to go back
to the drawing board and tweak the algorithm. On the other hand, if the
null hypothesis is rejected, then we could turn to more sophisticated machine
learning methods to try to approximate F .
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Chapter 6

Conclusions and
Recommendations

The process by which sensor data from a region suspected to contain land-
mines is used to determine a set of alarm sites is complex and influenced
by several conflicting priorities. These include the absolute need for positive
detection of targets, the desire for minimization of false detections, and the
computational expense of any algorithms that are applied. The procedure
discussed in this report focuses on the approach used by CoVar that gen-
erates a confidence map from sensor data, then identifies alarm sites from
information contained in the confidence map. Each stage, from sensor data
to confidence map, from confidence map to alarm set, and from alarm set
to a score relative to other competing methods, including “diligent digger”
algorithms that use no sensor data, lends itself to a variety of approaches
depending on the priorities in the optimization.

The following conclusions have been based on the analysis described in
this report:

1. Artifacts oriented transversally to the scan direction (i.e., across the
road) can be smoothed to mitigate the risk of false detections;

2. De-clustering data can identify topologically connected regions in
the confidence map based on a level set method and that this allows
the identification of the most relevant peaks to target detection;

3. Integrating the confidence map against library of configurations can
improve target detection rate compared to the peak detection method
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currently in use;

4. Aggregation is not sufficient to address performance gap between
above two methods (integration against configurations and peak detec-
tion method);

5. A library of configurations can also be used to inform “diligent
digger” algorithm, can be computationally intensive but approaches
probability density in limit;

6. Simulations confirm that sensor-based algorithm currently in use per-
forms well for easily identifiable targets, but decreases in effectiveness
as confidence level drops;

7. Improvements to “uninformed digger” algorithm can have an impact,
with variations including placing remaining alarms on regular
grid tiling unoccupied part of domain, and randomly placing
alarms with weight proportional to partition area; and

8. Alternative scoring metrics such as those based on hypothesis testing
that target sites are drawn from distribution derived from
confidence map can provide more insight into amount of information
contained in confidence map beyond that used to form alarm set.

Based on these findings, we recommend:

1. Implementation of more sophisticated data smoothing techniques
that account for structure;

2. Further investigation of detection methods that integrate configura-
tions or probability densities against a confidence map;

3. Use of greedy algorithms to select most likely configurations rather
than a comprehensive search; and

4. Use of alarm set scoring methods with statistical tests that use more
information from the confidence map or smoothed data.
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Appendix A

ROC and ROC-FAR

Scoring is based on the receiver operating characteristic (ROC) curve plotting
the probability of correct detection against the probability of false detection,
as shown in Fig. A.1. The ROC is parameterized by the threshold value
and naturally interpolates between the lower left corner, where an extremely
high threshold implies no detections at all, and the upper right corner, where
an extremely low threshold implies all detections, both correct and false.
Intermediate threshold values should ideally produce a low false positive
rate and high true positive rate, i.e., a concave ROC curve. An uninformative
(e.g., random) algorithm would produce correct and false positives with equal
probability, producing a straight line connecting the bottom left and top right
corners. Algorithms that incorporate additional target data are expected to
provide curves of increasing concavity, limiting to a Heaviside function that
immediately detects all targets before making a single false detection.

Various statistics are used to quantify an algorithm based on its ROC, one
of the most common being the area under curve (AUC). This approximately
corresponds to the probability that the algorithm will assign a higher value
to a true site than to a false one.

A variation on the ROC plots the detection probability against the false
detection rate normalized by the area of the region of interest remaining
after removal of detected targets, referred to in Fig. A.2 as a receiver op-
erating characteristic - false alarm rate (ROC-FAR). The arrows illustrated
in Fig. A.2 point in the direction corresponding to an uninformative (e.g.,
random) detection algorithm after removal of detected target area. As the
threshold is lowered, the ROC slope is also reduced as the algorithm grows
increasingly less effective at detecting the remaining targets. When the ROC
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Figure A.1: Receiver operating characteristic (ROC).

Figure A.2: Receiver operating characteristic with false alarm rate as ordinal
axis (ROC-FAR).

slope is comparable to the arrow slope, the algorithm is essentially useless in
translating the data into meaningful information regarding target detection.
In Fig. A.2, the arrows are produced by a suboptimal uninformed digger with
slopes that considerably underestimate those that would be provided by a
diligent digger.
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